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ABSTRACT

The study of human microRNAs is seriously ham-
pered by the lack of proper tools allowing genome-
wide identification of miRNA targets. We performed
Ribonucleoprotein ImmunoPrecipitation—gene Chip
(RIP-Chip) using antibodies against wild-type
human Ago2 in untreated Hodgkin lymphoma (HL)
cell lines. Ten to thirty percent of the gene
transcripts from the genome were enriched in the
Ago2-IP fraction of untreated cells, representing
the HL miRNA-targetome. In silico analysis
indicated that ~40% of these gene transcripts
represent targets of the abundantly co-expressed
miRNAs. To identify targets of miR-17/20/93/106,
RIP-Chip with anti-miR-17/20/93/106 treated cells
was performed and 1189 gene transcripts were
identified. These genes were analyzed for miR-17/
20/93/106 target sites in the 5-UTRs, coding
regions and 3'-UTRs. Fifty-one percent of them
had miR-17/20/93/106 target sites in the 3'-UTR
while 19% of them were predicted miR-17/20/93/
106 targets by TargetScan. Luciferase reporter
assay confirmed targeting of miR-17/20/93/106 to
the 3'-UTRs of 8 out of 10 genes. In conclusion, we
report a method which can establish the miRNA-
targetome in untreated human cells and identify
miRNA specific targets in a high throughput
manner. This approach is applicable to identify
miRNA targets in any human tissue sample or
purified cell population in an unbiased and physio-
logically relevant manner.

INTRODUCTION

MicroRNAs (miRNAs) are small RNAs of 19-23
nucleotides which were first discovered less than two
decades ago in Caenorhabditis elegans (1). Upon binding
to Argonaute (Ago) proteins, the RNA induced silencing
complex (RISC) is formed for post-transcriptional
silencing of genes (2). It is now known that numerous
cellular processes including proliferation, differentiation,
apoptosis and cell cycle are under regulatory control
of miRNAs (3).

Expression of miRNAs can be highly tissue specific (4)
and dynamic, as for example seen in hematopoiesis (5,6).
The cell physiological impact of miRNA expression was
shown by skewing of hematopoeitic stem cell differentia-
tion towards a specific hematopoeitic cell type by changing
the expression level of only one miRNA (7). Due to the
powerful influence of miRNAs as master regulators of
gene expression, it is evident that abnormal expression
of miRNAs may contribute to malignant transformation.

Accurate target gene validation has been proven
notoriously difficult as apparent by the relatively few
miRNA targets that have been experimentally proven
thus far. Taken into account that 10-30% of the genes
from the genome are predicted to be under the control
of miRNAs (8,9), many miRNA:mRNA interactions are
still unknown. Several algorithms are available to predict
miRNA target genes (8,10,11). However, the consistency
between different miRNA prediction algorithms available
is limited and the false positive rate is high (8,12). Results
from the prediction programs require experimental valida-
tion, such as by luciferase reporter assay and western
blotting. Current genome wide screenings approaches
include microarray analyses, two-dimensional fluores-
cence Difference Gel Electrophoresis (2D-DIGE) and
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stable isotope labeling with amino acids in culture
(SILAC) (13,14). However, each of these approaches
have their specific caveats including lack of effect at the
mRNA level, labor intensiveness, accuracy, complexity of
the proteome and protein half life.

Recently, several studies reported application of an
interesting new biochemical approach to analyze cellular
mRNA associated with RISC (15-20). In human cells the
immunoprecipitation (IP) of Ago protein was combined
with overexpression of synthetic miRNAs (18-20).
Moreover, flag-tagged Ago proteins were used requiring
a significant modulation of the cells which may result
in target genes that are not physiologically relevant. The
lack of high throughput methods to accurately identify
miRNA targets relevant to a specific cell type in an
unbiased manner hampers the progression in the discovery
of miRNA targets.

In this study, we describe an approach which
allows large scale identification of miRNA targets in
untreated cells. In this adapted Ribonucleoprotein
ImmunoPrecipitation—gene Chip (RIP-Chip) approach,
wild-type human Ago2 protein is directly immunopre-
cipitated from untreated cells. The Ago2-associated
mRNA transcripts are analyzed by microarray to
identify the miRNA-targetome (whole miRNA regulated
gene set) of a specific cell. Moreover, by combining this
approach with inhibition of specific miRNAs, we estab-
lished an approach which allows large-scale identification
of endogenous transcripts that are targeted by a specific
miRNA. This strategy provides unbiased identification of
physiologically relevant miRNA target genes.

MATERIALS AND METHODS
Cell culture and transfection

The HL cell lines, L428 and L1236 were cultured in RPMI
1640 supplemented with ultraglutamine, 100 U/ml penicil-
lin/streptomycin, and 5 or 10% fetal bovine serum
(Cambrex Biosciences, Walkersville, USA), respectively.
Cells were diluted 1:2 on the day prior to transfection
and/or Ago2 immunoprecipitation.

Locked nucleic acid (LNA) with phosphorothioate (PS)
backbone antisense to miR-17-5p, miR-20a, miR-93, miR-
106a and miR-106b (Integrated DNA Technologies,
Leuven, Belgium) were pooled to form a cocktail of
anti-miR-17/20/93/106. LNA antisense to miR-220 was
used as a negative control as miR-220 is not expressed
in L428 (21). Transfection of cell lines was performed
using the Amaxa nucleofector I device (Amaxa,
Gaithersburg, USA) with solution L, program X-01 for
L428 and solution V, program T-01 for L1236. For the
RIP-Chip experiment, 5-million cells were transfected with
2.5nmol of anti-miR-17/20/93/106 or anti-miR-220 and
the cells were harvested 16h later. Effective silencing of
miR-17/20/93/106 in the cell lines (L428 and 1.1236) had
been proven with luciferase reporter assay and western
blot for CDKNIA/p21 (data not shown), a proven
miR-17 seed family target (22).
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RIP-Chip: IP and western blotting

IP of ribonucleoprotein was performed as previously
described (23) in both HL cell lines (L1236 and 1.428)
with and without transfection of anti-miR-17/20/93/106
and additionally L1428 with transfection of anti-miR-220
as a negative control. Briefly, 10-20-million cells were
lysed in 100pl ice cold polysome lysis buffer (5SmM
MgCl,, 100mM KCI, 10mM Hepes, pH7.0 and 0.5%
Nonidet P-40) with freshly added 1 mM DTT, 100 U/ml
Rnase OUT (Invitrogen, Carlsbad, USA) and 1x
complete mini EDTA free protease inhibitor cocktail
(Roche, Basel, Switzerland) for 5min. Centrifugation
was carried out two times at 14000g at 4°C for 10 min.
Supernatant was mixed with 900 ul of ice-cold NT2 buffer
(50 mM Tris, pH 7.4, 150 mM NaCl, | mM MgCl,, 0.05%
Nonidet P-40) containing freshly added 200 U/ml Rnase
OUT (Invitrogen, Carlsbad, USA), 0.5% vanadyl ribonu-
cleoside (Invitrogen, Carlsbad, USA), 1 mM DTT, 15mM
EDTA and 50 pl mouse anti-human Ago2 (Clone 2E12-
1C9, Abnova, Taipei City, Taiwan) coated sepharose G
beads (Abcam, Cambridge, UK). Incubation was carried
out overnight at 4°C on a rocking platform. On the fol-
lowing day, beads were washed five times with ice-cold
NT2 buffer and separated into two portions—one for
RNA isolation to identify miRNA target genes and
another portion for western blotting to check for success-
ful TP of Ago2. Mouse IgG; isotype control (Abcam,
Cambridge, UK) was used as a negative control for the
IP procedure. The mouse anti-Ago2 used in the IP
was also used for western blotting at a dilution of
1:1000 while secondary antibody was rabbit anti mouse
conjugated with horse radish peroxidase (Dako, Glostrup,
Denmark), also at a dilution of 1:1000. For visualization,
the blot was incubated 5 min with SuperSignal West Pico
Chemiluminescent Substrate (ThermoScientific, Rockford,
USA) prior to exposure to film.

RIP-Chip: RNA isolation and microarray analysis

RNA from the flow through (FT) fraction of untrans-
fected L1236, total cell lysate fractions and Ago2-IP
fractions of all cells were isolated using Trizol and
glycogen (all from Invitrogen, Carlsbad, USA) as a
carrier in the ethanol precipitation step. RNA quality
was checked with the 2100 Bioanalyzer (Agilent, Santa
Clara, USA) and the concentration was determined by
Nanodrop 1000 (Thermo Scientific, Wilmington, USA).
Microarray analysis was performed according to the man-
ufacturer’s protocol (Agilent, Santa Clara, USA). Briefly,
first strand cDNA was synthesized from 200ng RNA,
followed by cRNA amplification and labeling with Cy3
or Cy5. Purification of Cy3 or Cy5 labeled cRNA was
carried out with Qiagen RNeasy Mini kit (Qiagen,
Venlo, Netherlands). The cRNA quantity and labeling
specificity were determined using the NanoDrop 1000
(Thermo Scientific, Wilmington, USA). Equal amounts
of Cy3 or Cy5 labeled cRNA from the Ago2-IP or FT
fraction and from the corresponding total cell lysate
fraction were mixed and hybridized in a dye swap design
at 65°C overnight on Agilent 44k 60-mer Human Whole
Genome Oligo Microarray. On the following day, slides
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were washed and signals were scanned with GenePix
4000B (Agilent, Santa Clara, USA). Signal intensities
from scanned images were processed and converted into
Linear and Lowess normalized data using Agilent Feature
Extraction software version 9.1. Quality control report
was generated for each array. Using GeneSpring GX
version 9.0 (Agilent, Santa Clara, USA), the abundance
of probes in the Ago2-IP or FT fraction was compared
with the abundance in the total fraction. For each probe,
the signal intensity from the Ago2-IP or FT RNA fraction
was divided by the signal intensity from the total cell
lysate RNA fraction (IP/T or FT/T). For each dye
swap, the average IP/T or FT/T ratio was calculated.
Any gene transcript corresponding to a probe with an
average IP/T ratio of at least 2 was considered as being
enriched in the Ago2-IP fraction, representing the
miRNA-targetome (Table 1 and Supplementary Data 1).
IP/T of each probe from the untransfected cells was
compared with IP/T of those in the cells transfected with
antisense oligonucleotides (Supplementary Data 1). Two
criteria were set to identify miR-17 seed family specific
miRNA targets: (i) the probes must be present in the
Ago2-IP fraction (IP/T>2) of untransfected cells and (ii)
in the transfected cells, the probes should show >2-fold
depletion from the Ago2-IP fraction when compared with
the Ago2-IP fraction of untransfected cells. Different
depletion folds from the Ago2-IP fraction upon specific
miRNA inhibition were used to generate probe sets for
seed matching site analysis and prediction by algorithms.
The data described in this publication have been deposited
in NCBI’s Gene Expression Omnibus (24) and are acces-
sible through GEO Series accession number GSE14409
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =
GSE14409).

In silico analysis of miRNA seed matching sites

For the HL miRNA-targetome, 3'-UTRs of all gene
transcripts were analyzed for 8-mer site matching to the
top 5% most abundant miRNAs in L428 and L1236 (23
out of 470 miRNAs assessed, representing 10 miRNA seed
families (21), Supplementary Data 2). MiR-155 was
excluded from the search because it was highly expressed
in L1236 but only moderately (not top 5%) in L428. To
identify targets of the miR-17 seed family, 6-mer and
8-mer sites in the 3’-UTRs were analyzed. The 6-mer site
is considered as the least stringent requirement for
miRNA targeting while an 8-mer site is considered to be
the most reliable indication for miRNA targeting (14).
Additionally, conditions like 5-UTRs, coding sequences
and GU wobble were included in the analysis for miR-17
seed family targeting. Since any short sequence has a very
high occurrence throughout the genome, the miRNA seed
matching sites were first subjected to a background
analysis to calculate the percentage of gene transcripts
in the genome with the exact site matches within all
known 3'-UTR sequences of all human genes. The
3’-UTR sequences were downloaded from the UCSC
website (release March 2006) and loaded into a MySQL
database server for convenience using our own
programmed importing tool (available upon request).
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Using specific queries we could identify any miRNA
seed matching site and its occurrence throughout the
genome. Probe sets generated from the RIP-Chip experi-
ment were analyzed with this method and compared with
the results obtained from the genome. All information
about miRNA seed matching sites for each probe in
the miRNA-targetome can be found in Supplementary
Data 1.

miRNA target prediction

TargetScan release 5.0 was used to predict targets of the 10
miRNA seed familes and miBridge was used to predict
miR-17 seed family targets (11,25). For TargetScan, only
conserved miRNAs that target conserved gene transcripts
were considered. Not all gene transcripts identified in the
RIP-Chip experiment were included in the database of
the prediction programs because most of the time only
the Refseq transcripts or only one of the 3'-UTR for
any gene, rather than all 3’-UTRs of all transcripts, are
included.

Luciferase reporter assay

3-UTRs of 13 genes (Table 2) were cloned into
psiCHECK?2 vector for luciferase reporter assay
(Promega, Madison, USA) as previously described (21).
L428 was chosen for luciferase reporter assay because
L428 showed higher cell viability and transfection effi-
ciency as compared with L1236. Briefly, the sequence of
interest (Supplementary Data 3) was cloned behind the
renilla luciferase (RL) gene in the psiCHECK?2 vector.
The insert was checked by sequencing. The firefly
luciferase (FL) gene present in the same vector was
used for normalization to rule out variation in transfec-
tion efficiency across samples. One to two-million 1428
cells transfected with 2pg of each construct with
or without 2nmol of anti-miR-17/20/93/106 were
harvested 48h post transfection for dual Iluciferase
measurement. RL/FL ratio of cells transfected only
with the construct was set at 100%. Changes in RL/FL
ratio in cells cotransfected with anti-miR-17/20/93/106
are shown as percentage compared with the control.
All transfections were repeated at least three times to
demonstrate consistency of the results and calculate
standard deviations.

RESULTS
RIP-Chip of untreated HL cells

Protein coding mRNA transcripts which serve as target
genes for miRNAs are bound indirectly to the Ago-
containing RISC (Figure 1A). An antibody against wild-
type human Ago2 was used to immunoprecipitate the
RISC from the total cell lysate of HL cell lines L1236
and L428. IP was validated by western blotting, showing
Ago2 protein in the total cell lysate and the Ago2-IP
fraction, while the Ago2 protein was absent in the flow
through (FT) fraction. A mouse isotype control (IgGl)
antibody was used as a negative control. Here, western
blot showed Ago2 protein in the total cell lysate and in
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Figure 1. RIP-Chip for identification of Ago2 associated gene transcripts. (A) Schematic diagram of the RNA induced silencing complex (RISC)
mediated gene silencing. (B) IP of Ago2 complex, analyzed by western blotting (IB). Ago2 was pulled down when appropriate antibody was used.
Mouse IgG1 was used as a negative control and indeed revealed no IP of Ago2. (C) Microarray analysis showed that 43 probes in flow through (FT)
of L1236, 3164 probes in IP of L1236 and 2703 probes in IP of L428 (highlighted in green) were more than 2-fold enriched compared with the
total cell lysate (T). (D) Probe sets enriched in the Ago2-IP showed a good correlation in both Hodgkin lymphoma cell lines. Probes representing the

‘non-miRNA targets’ (IP/7<0.5) were outlined in open box with dash line.

Table 1. Numbers of probes enriched in FT or Ago2-IP fraction as
compared with total cell lysate

FT/T /T

L1236 L1236 L428
>4 1 882 398
=2 43 3164 2703
>1 15075 12409 15178

FT, flow through fraction. T, total cell lysate. IP, immunoprecipitated
fraction.

the FT, but not in the IP fraction (Figure 1B). Using gene
expression arrays, the signal intensities of probes
associated with Ago2-IP were compared with the signal
intensities of probes in the total cell lysate fraction (IP/T
ratio). Different IP/7 thresholds (1, 2 and 4) were applied
to determine the probes enriched in the IP fraction. A
threshold of IP/T>1 resulted in the identification of
12409 probes in L1236 and 15178 probes in L428
enriched in the Ago2-IP fractions. An IP/7>2 reduced
the number of probes enriched in the IP fraction to 3164
in L1236 and 2703 in L428 (Figure 1C and Table 1). With
a threshold of IP/7T>4, the number of probes enriched in
the IP fraction was reduced to 882 in L1236 and 398 in
L428. As an additional control, we also analyzed the FT
of L1236 in the same way, this revealed 15075, 43 and 1
probe using an FT/T threshold of 1, 2 and 4, respectively.
Based on the results observed in FT/T, and considering

the fact that 10-30% of the genes from the genome are
predicted to be under the control of miRNAs (8,9), we
chose IP/T>2 as the threshold for miRNA target genes
and collectively called all gene transcripts in this category
as the HL miRNA-targetome. Interestingly, the miRNA-
targetome of L1236 and L428 shared a marked overlap
but also showed distinct differences (Figure 1D). These
differences are caused by minor discrepancies in
transcriptome and differences in the extent of miRNA reg-
ulation between 1.1236 and L.428.

In silico analysis of the HL. miRNA-targetome

Three thousand one hundred sixty-four probes (represent-
ing 2746 unique gene transcripts and 2629 genes) in L1236
and 2703 probes (representing 2431 unique gene
transcripts and 2363 genes) in L428 with IP/7T>2 were
considered as the miRNA-targetome of the corresponding
cell lines and these probe sets were studied to assess
miRNA targeting in silico. The probe set with IP/7<0.5
in both untreated HL cell lines (Figure 1D) was termed as
‘non-miRNA targets’ and used as a negative control. The
top 5% expressed miRNAs in L428 and L1236 (21)
harbored 10 different seed sequences (Supplementary
Data 2). These miRNAs were considered to be the
miRNA candidates accountable for a main part of the
miRNA-targetome. Two aspects were used as definitions
for miRNA targets: (i) presence of miRNA 8-mer seed
matching site in the 3-UTR and (ii)) prediction by
TargetScan release 5.0. All information about miRNA
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Figure 2. Enrichment of miRNA targets is apparent in miRNA-
targetome of HL but not in ‘non-miRNA targets’. Definitions of
miRNA targets were (i) prediction of targeting by TargetScan release
5.0 and (ii) presence of 8-mer site in the 3’-UTRs. In both definitions
the percentage of miRNA targets was always higher in the miRNA-
targetome of HL (L428 and L1236) and lowest in the ‘non-miRNA
targets’, when compared with genome or the whole database.

seed matching sites and TargetScan prediction for each
probe in the miRNA-targetome can be found in
Supplementary Data 1.

In the analysis of 3’-UTRs for 8-mer site matching to
each of the 10 seeds of the top 5% expressed miRNAs, the
percentage of miRNA targets was always higher in the
miRNA-targetome of both cell lines as compared with
the genome (Figure 2). Moreover, about 32% of the
miRNA-targetome of both HL cell lines contained the
8-mer sites of at least one of the 10 seeds whereas
this was only 18% in the genome. Notably, 10% of the
miRNA-targetome of both HL cell lines contained at least
two 8-mer sites of the top 5% expressed miRNAs.

According to the TargetScan release 5.0, the miRNA-
targetome of both HL cell lines contained higher
percentages of miRNA targets of the 10 seced families
when compared with the percentage in the database
(Figure 2). About 30 and 40% of the miRNA-targetome
of L1236 and 1428, respectively, were predicted as targets
of at least one of the top 5% expressed miRNAs whereas
only 24% of all genes present in the TargetScan database
were predicted targets of at least one of the top 5%
expressed miRNAs. The percentage of genes predicted
to be targeted by at least two of the top 5% expressed
miRNAs was 9% for all genes in the TargetScan
database, 15 and 21% in the miRNA-targetome of 1428
and L1236, respectively.

In contrast to the enrichment of miRNA targets
observed in the HL miRNA-targetome, the percentage
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of miRNA targets in ‘non-miRNA targets’ was always
lower compared with the genome (Figure 2).

Our data indicated that we obtained a significant
enrichment of miRNA targets in the Ago2-IP fraction
(i.e. miRNA-targetome). In HL, the top 5% expressed
miRNAs could already be sufficient to regulate up to
~40% of the miRNA-targetome. The remaining 60% of
the miRNA-targetome is assumed to be regulated by other
miRNAs which are moderately expressed in HL.

Anti-miRNA strategy combined with RIP-Chip

As miRNAs from the miR-17 seed family comprised a
large proportion of the top 5% expressed miRNAs in
HL (21) and are frequently associated with the regulation
of cell cycle, we proceed with anti-miRNA strategy
combined with RIP-Chip to identify the endogenous
miR-17 seed family targets in HL.

Upon inhibition of miRNAs of the miR-17 seed family
by antisense oligonucleotides, targets of the miR-17 seed
family are depleted from the Ago2-IP fraction and remain
in the FT fraction (Figure 3A). In order to identify targets
of the miR-17 seed family in a high throughput manner,
RIP-Chip was carried out in both HL cell lines (L1236 and
L428) with transfection of anti-miR-17/20/93/106, and the
data were compared with the data of untransfected cells.
Validation of the IP procedure by western blots revealed a
positive staining of Ago2 in the total and the Ago2-IP
fraction whereas no Ago2 was observed in the FT
fraction (Figure 3B). This showed that the IP procedure
was successful. RNA was isolated from the total and
Ago2-IP fraction of all cells and were subjected to micro-
array analysis. By comparing IP/T values of untransfected
and anti-miR-17/20/93/106 transfected cells, 493 probes in
L428 and 895 probes in L1236 were >2-fold depleted from
the Ago2-IP fraction as compared with untransfected cells
(highlighted in blue, Figure 3C). Probes with <2-fold
depletion were considered as ‘not depleted’. In addition
to the >2-fold depletion, we also analyzed the probe sets
showing >3-7-fold depletion for targeting by the miR-17
seed family (Supplementary Data 4). The ‘not depleted’
probes in L1428 and L1236 were merged together as the
‘non-miR-17 targets’, probe sets with >2 depletion fold in
both cell lines as the ‘miR-17 targets’, and probe sets with
>4-fold depletion in L428 and >7-fold depletion in L1236
as the ‘potent miR-17 targets’ (gene transcripts with
highest depletion fold). Every gene transcript isoform
was considered as a unique entity and this led to 3163
‘non-miR-17 targets’, 1189 ‘miR-17 targets’ and 66
‘potent miR-17 targets’. As a control, we also compared
the IP/T values of untransfected and anti-miR-220
transfected 1428 cells, which revealed only 211 probes
that were >2-fold depleted from the Ago2-IP fraction
(highlighted in blue, Figure 3C).

Analysis of miR-17 binding sites for miR-17 targets
identified in RIP-Chip

Every gene transcript from the human genome was
inspected for the presence of miR-17 seed matching sites
(6-mer and 8-mer) in the 3-UTR and analyzed with
prediction programs (miBridge and TargetScan). In all
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analysis, the percentage of putative miR-17 seed family
targets showed a gradual increase from the HL miRNA-
targetome to ‘miR-17 targets’ and was the highest in the
‘potent miR-17 targets’ (Figure 4A). Fifty percent of all
gene transcripts in ‘miR-17 targets’ and 67% of all gene
transcripts in ‘potent miR-17 targets’ contained at least
one 6-mer matching site in the 3’-UTR (Figure 4A).
When less stringent conditions (6-mer miR-17 seed
matching site with GU wobble allowed) were applied
and the search was expanded to include 5-UTRs and
coding sequences, 76% of ‘miR-17 targets’ and 82% of
‘potent miR-17 targets’ contained at least one miR-17
seed matching site in anywhere of the entire gene tran-
script (Figure 4B, Supplementary Data 1 and 5).

As a negative control seed matching sites for miR-220
were also analyzed (Figure 4C) and the percentages were
normalized to the percentages found in the genome
(Figure 4D). In this analysis, the enrichment of gene
transcripts with miR-17 seed matching site in the ‘potent
miR-17 targets’ reached up to 2-fold for 6-mer and up to
11-fold for 8-mer site while the enrichment of miR-220
seed matching site was consistently low (0-1.3-fold) in
all three groups (Figure 4D).

Higher depletion folds appeared to be correlated with
the number and density (average number of 6-mer
sites/kb) of miR-17 seed matching sites in the 3'-UTR
(Figure 5). The ‘potent miR-17 targets’ had the highest
density for miR-17 seed matching site compared with
‘miR-17 targets’ and ‘non-miR-17 targets’ (Figure 5A).

Enrichment of gene transcripts with multiple miR-17
seed matching sites in the ‘potent miR-17 targets’
reached up to 9-fold for 6-mer and 55-fold for 8-mer site
(Figure 5B). These results indicated that our approach led
to an increased number of gene transcripts with single and
multiple miR-17 seed matching sites.

In L428 cells transfected with anti-miR-220, we did not
observe a correlation of higher depletion fold with per-
centage of probes with miR-220 seed matching sites
(both 6-mer and 8mer) (Supplementary Data 4). This
indicated that no miR-220 targets are identified with this
approach, which is consistent with the lack of miR-220
expression in the HL cells. To determine depletion of
non-specific probes due to the transfection procedure,
we compared anti-miR-220 depleted probes to anti-miR-
17/20/93/106 depleted probes. In 1428 cells, 154 probes
were depleted in both anti-miR-17/20/93/106 and anti-
miR-220 transfected cells (Supplementary Data 1). Sixty-
two percent (96/154) of these consistently depleted probes
contain at least one perfect 6-mer seed matching site for
miR-17 in the 5-UTR, coding region and/or 3’-UTR of
the gene transcript while 39% of them (60/154) contain at
least one perfect 6-mer seed matching site for both miR-17
and miR-220 in the 5-UTR, coding region and/or 3’-UTR
(Supplementary Data 1). Using less stringent conditions
for miR-17 seed family target (i.e. 6-mer seed matching
site with GU wobble allowed in 5-UTR, coding region
and 3'UTR), 73% (113/154) of these consistently
depleted probes were identified as potential targets of
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Figure 4. Enrichment of miR-17 seed family targets was correlated with higher depletion fold upon inhibition of the miR-17 seed family. (A)
Percentage of miR-17 seed family targets by all definitions (presence of 6-mer site and 8-mer sites in 3’-UTRs, prediction by programs) was always
highest in the ‘potent miR-17 targets’. (B) Analysis of 6-mer miR-17 seed matching site with GU wobble allowed in the entire gene transcript
revealed up to 76% of ‘miR-17 targets’ and 82% of ‘potent miR-17 targets’ with at least one miR-17 seed matching site in the entire gene transcript.
(C) 6-mer and 8-mer seed matching sites for miR-17 and miR-220. (D) Enrichment of gene transcripts with miR-17 seed matching sites is correlated
with higher depletion fold upon inhibition of the miR-17 seed family. In contrast, enrichment of miR-220 seed matching site, a miRNA which is not

expressed in L428 is minimal.

miR-17 seed family. Based on these data we did not
exclude them from the ‘miR-17 target’ list.

Validation by luciferase reporter assay

To validate the results generated from this RIP-Chip
approach, 13 genes, namely ADRB2, CCLI, CD274,
FBX031, GPRI37B, NPAT, OBFC2A, RABI2, RBJ,
SGKI, YESI, ZNF22 and ZNFXI (Figure 6), were

chosen for luciferase reporter assay. These genes can be
further categorized into groups according to their deple-
tion fold in the Ago2-IP fraction upon miR-17/20/93/106
inhibition (‘non-miR-17 targets’, ‘miR-17 targets’ or
‘potent miR-17 targets’), presence of 6-mer and 8-mer
site for miR-17 in their 3'-UTRs (Table 2).

ADRB?2 and SGKI were ‘non-miR-17 targets’ according
to the RIP-Chip experiment and contained no 6-mer site
for miR-17 in the 3’-UTRs. These two genes were negative
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Table 2. Genes selected for luciferase reporter assay

Depletion miR-17 site in  Confirmed
fold 3-UTR by luciferase
reporter
6-mer 8-mer assay

non miR-17 targets

ADRB2  NM 000024 1.37 0 0 N
SGK1 NM 005627 1.44 0 0 N
RABI2 NM 001025300 1.73 1 0 Y
miR-17 targets

YESI NM 005433 2.08 5 0 Y
RBJ NM 016544 2.53 6 1 Y
NPAT NM 002519 3.54 4 0 Y
FBX031 NM 024735 3.78 3 1 Y
OBFC2A* NM 001031716  4.64 1 0 Y
GPRI137B* NM 003272 4.88 2 0 Y
CCL1* NM 002981 5.67 1 1 Y
ZNFX1*  NM 021035 9.97 5 2 Y
ZNF22*  NM 006963 5.14 0 0 N
CD274% ENST0000038157 5.23 0 0 N

“Also belong to the ‘potent miR-17 targets’.

in the luciferase reporter assay (Figure 6). RABI2 was
marginally depleted in RIP-Chip (1.73-fold) and was
listed as a ‘non-miR-17 target’. In contrast to ADRB2
and SGKI, RABI2 contained a 6-mer site for miR-17
and showed enhanced luciferase activities upon inhibition
of the miR-17 seed family (Figure 6). All ‘miR-17 targets’
and ‘potent miR-17 targets’ identified from the RIP-Chip
experiment that contained at least one 6-mer site for miR-
17 in the 3'-UTRs (CCLI, FBX031, GPRI37B, NPAT,
OBFC2A4, RBJ, YESI and ZNFXI) showed increased
luciferase signals upon inhibition of the miR-17 seed
family (Figure 6). A more pronounced increase was
observed with the ‘potent miR-17 targets’ that contained
at least one 6-mer site for miR-17. The two ‘potent miR-17
targets” without a 6-mer site for miR-17 in the 3-UTR
(CD274 and ZNF22) did not yield increased signals in
the luciferase reporter assays upon inhibition of the
miR-17 seed family (Figure 6). Notably, five of the nine
genes showing enhanced luciferase signals have at least
one 6-mer but not a 8-mer site for miR-17 in the
3’-UTRs (Table 2).

DISCUSSION

We have demonstrated the effectiveness of a high
throughput method for identification of endogenous
miRNA targets in untreated human cells. This approach
not only allows the analysis of the complete transcriptome
for miRNA targets but also permits a more direct identi-
fication of physiologically relevant miRNA targets in
human cells and tissues. Subsequently, in combination
with anti-miRNA strategy the RIP-Chip approach led to
high throughput identification of endogenous targets of
the miR-17 seed family.

Prediction programs for miRNA targets often predict
all possible targets irrespective of their physiologically
relevance and their co-expression with the corresponding
miRNA. Consequently, the false positive rate for
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Table 3. Known miRNA target genes that have been found in the
miRNA-targetome

miRNA Target

let-7/miR-98
miR-15/16
miR-17/20/93/106

KRAS, CASP3
DMTFI, CCNDI, CCNEI
NCOA3", RBI*, TGFBR2®, E2F3,
ARID4B*, MYLIP, CDKNIA, TP53INPI*
TPMI
MCLI

miR-21
miR-29

“Proven miR-17 targets which were also revealed in the RIP-Chip
approach with inhibition of the miR-17 seed family.

prediction programs can be high and selection of the
most relevant genes from a long list of predicted
miRNA targets is difficult. Up to date there are several
publications showing the feasibility of the biochemical
RISC-IP approach to identify miRNA targets. The
experiments described in these publications were per-
formed in Drosophila melanogaster (15), by IP of AIN-1
and AIN-2, other RISC associated proteins in
Caenorhabditis elegans (16), using cloning based strategy
in the human embryonic kidney HEK293 cell line (17) and
tagged Ago proteins also in the HEK 293 cell line (18-20).
In the latter studies, experiments were performed using
tagged Ago proteins and miRNAs that are not
endogenously expressed in HEK293 for miRNA target
identification. This may result in targets that normally
are not co-expressed with their targeting miRNA and
hence the physiological relevance is questionable. The
approach we demonstrated here identifies mRNAs which
are associated with endogenous miRNA in wild-type
human Ago2 containing complex and thus allows direct
screening of any human tissue or cell type. Also, we
showed that cross-analysis of the results from an anti-
miRNA strategy combined with RIP-Chip and presence
of a 6-mer site in the 3’-UTR, irrespective of program
prediction, can be sufficient to confirm specific miRNA
targeting.

Fifteen known targets of the top 5% expressed miRNAs
(13,22,26-36) were identified in our HL miRNA-
targetome (Table 3), showing the effectiveness of our
approach. Within the HL miRNA-targetome we found a
significant enrichment of genes that are associated with the
p53 signaling pathway, ubiquitin mediated proteolysis,
apoptosis and regulation of cell size (data not shown),
features which are related to the nature of the tumor
cells of HL. This HL miRNA-targetome includes genes
which are known to be inactivated by mutations in HL
cases, like FAS, NFKBIA, NFKBIE, SOCSI and
TNFAIP3 (37-42). These results reflect the physiological
relevance of our study.

Combining anti-miRNA strategy with RIP-Chip
revealed 1189 gene transcripts (‘miR-17 target’) that
were >2-fold depleted from the Ago2-IP upon miR-17/
20/93/106 inhibition. Comparison of these 1189 ‘miR-17
targets’ to the 990 miR-17 target genes predicted by
TargetScan (release 5.0) revealed an overlap of ~20%.
The limited overlap may be due to the inclusion of all
genes with conserved target sites in 3-UTR by the
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TargetScan prediction program whereas in our experimen-
tal approach, we evaluated only endogenous transcripts.
According to the results from the luciferase reporter assay,
all genes with >2 depletion fold and presence of the 6-mer
site for miR-17 in the 3’-UTR can be directly considered
as targets of the miR-17 seed family. This resulted in 599
gene transcripts that were identified as miR-17 targets in
our approach. However, the remaining 590 gene
transcripts included in the ‘miR-17 targets’ list lacked
6-mer sites in the 3’-UTRs, like ZNF22 and CD274. 1t
might be speculated that the target sites for these genes
are present in the coding region and/or the 5-UTRs, as
has been reported for pl16 regulation by miR-24 (43) and
SEC24D regulation by miR-605 (25). To address this
question, we re-analyzed the entire miRNA-targetome of
HL for presence of miR-17 binding site with the less strin-
gent conditions i.e. 6-mer miR-17 seed matching site with
GU wobble allowed. Moreover, we expanded the seed
matching search into 5-UTRs and coding regions
(Figure 4B, Supplementary Data 1 and 5). In L428, up
to 88% of all ‘potent miR-17 targets’ (including ZNF22
and CD274) and 76% of ‘miR-17 targets’ contained at
least one 6-mer miR-17 seed-matching site (Supple-
mentary Data 1 and 5). This result is in line with the
expectation that miRNA targets should contain target
sites matching to the seed sequence of miRNA. In our
opinion, the percentage did not reach 100% because the
analysis was made with the assumption that only site
matching to the 5" seed of the miRNA is important for
targeting and sequence complementarity between the 3’
end of the miRNA to the target is ignored. We cannot
exclude presence of genes in the miRNA-targetome due
to non-specific binding. Also, we cannot exclude the pos-
sibility of newly acquired or lost of miR-17 seed family
target sites in gene transcripts that were expressed in the
HL cell models. These two issues can be addressed by
application of the recently published technique called
high throughput sequencing of RNA isolated by
crosslinking IP (HITS-CLIP) (44,45). In HITS-CLIP, the
extra crosslinking step induced a covalent binding of
the RNA to RISC, allowing a more stringent purification.
Also, the exact miRNA binding sites can be identified
by deep sequencing.

In the HL miRNA-targetome, co-regulation of a gene
transcript by multiple miRNAs is common (as indicated
in our in silico analysis, Supplementary Data 1). In the
RIP-Chip experiment with inhibition of the miR-17 seed
family, we identified five out of eight of the miR-17
targets, NCOA3, RBI, TGFBR2, ARID4B, TP53INPI
that were experimentally proven elsewhere (26,30-32).
The other three experimentally proven miR-17 targets
(E2F3, MYLIP and CDKNIA) (22,28,32) had depletion
fold of 1-1.8 and hence were categorized in the ‘non-
miR-17 targets’. Similarly, we validated RABI2 as a
target of the miR-17 seed family, but it was only 1.73-
fold depleted upon inhibition of the miR-17 seed family.
It can be speculated that inhibition of the miR-17 seed
family alone is insufficient to remove RABI2, E2F3,
MYLIP and CDKNIA from the Ago2-IP fraction, based
on the presence of predicted target sites for let-7, miR-15,
miR-25, miR-19 and miR-29 in the 3’-UTR of these genes.
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Although we cannot exclude the presence of miR-17 seed
family targets in the ‘non-miR-17 targets’ group, these
genes most likely are simultaneously targeted by
miRNAs other than the miR-17 seed family and hence
minimal effects are seen upon inhibition of only miR-17/
20/93/106. The complexity of miRNA:mRNA interaction
(46) still awaits to be addressed.

Consistent with the observation from the Bartel group
who used a proteomics approach to identify miRNA
targets (14), we found a higher enrichment of 8-mer sites
as compared with 6-mer sites in the RIP-Chip identified
miRNA targets. However, five out of nine targets of the
miR-17 seed family verified in our luciferase reporter assay
have 6-mer but not 8-mer site in the 3-UTRs. Our results
suggest that presence of the §-mer site in the 3’-UTR is a
good indicator to identify miRNA-specific targets, but
presence of the 8-mer site is not obligatory for effective
targeting by miRNA. Recently, the Ambros group
analyzed mRNA transcripts which were identified by IP
of AIN proteins in C. elegans and created a program
called mirWIP (47). This program considers various
features of the experimentally identified miRNA targets
(like structural accessibility of target sequences, total free
energy of miRNA-target binding) and hence a better
refinement of the miRNA prediction algorithm can be
achieved. Within the scope of our study, perfect 6-mer
seed matching sites in the 3’-UTR is still the best criterion
to identify miR-17 seed family targets from the genome, as
this criterion clearly discriminate the two groups better
than other criteria (Figure 4B, Supplementary Data 95).
Despite the higher coverage observed for the analysis
which allowed GU mismatches, these criteria suffer
from a high background precluding an effective analysis
for enrichment of miRNA targets (Figure 4B, Supple-
mentary Data 5). Hence, it will be interesting to include
the human miRNA targets identified in our study for
mirWIP analysis and sort out the conditions which dis-
criminate between the ‘miR-17 targets’ and background.

In conclusion, we have established a high throughput
approach to identify endogenous miRNA targets of
untreated human cells and provide an option to evaluate
miRNA seed family specific targets. This is an important
improvement as current methods lack the advantage of
high throughput and unbiased identification of physiolog-
ically relevant target genes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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